Detecting Problematic Turns in Human-Machine Interactions: Rule-induction Versus Memory-based Learning Approaches
نویسندگان
چکیده
This paper addresses the issue of on-line detection of communication problems in spoken dialogue systems. The usefulness is investigated of the sequence of system question types and the word graphs corresponding to the respective user utterances. By applying both rule-induction and memory-based learning techniques to data obtained with a Dutch train time-table information system, the current paper demonstrates that the aforementioned features indeed lead to a method for problem detection that performs significantly above baseline. The results are interesting from a dialogue perspective since they employ features that are present in the majority of spoken dialogue systems and can be obtained with little or no computational overhead. The results are interesting from a machine learning perspective, since they show that the rule-based method performs significantly better than the memory-based method, because the former is better capable of representing interactions between features.
منابع مشابه
Learning to Extract Proteins and their Interactions from Medline Abstracts
We present results from a variety of learned information extraction systems for identifying human protein names in Medline abstracts and subsequently extracting interactions between the proteins. We demonstrate that machine learning approaches using support vector machines and hidden Markov models are able to identify human proteins with higher accuracy than several previous approaches. We also...
متن کاملMachine Learning for Shallow Interpretation of User Utterances in Spoken Dialogue Systems
We investigate to what extent automatic learning techniques can be used for shallow interpretation of user utterances in spoken dialogue systems. This task involves dialogue act classification, shallow understanding and problem detection simultaneously. For this purpose we train both a rule-induction and a memory-based learning algorithm on a large set of surface features obtained by affordable...
متن کاملComparative experiments on learning information extractors for proteins and their interactions
OBJECTIVE Automatically extracting information from biomedical text holds the promise of easily consolidating large amounts of biological knowledge in computer-accessible form. This strategy is particularly attractive for extracting data relevant to genes of the human genome from the 11 million abstracts in Medline. However, extraction efforts have been frustrated by the lack of conventions for...
متن کاملEvaluating the Success of the Visual Learners in Vocabulary Learning through Word List versus Sentence Making Approaches
Thisstudy sought to evaluate the learners' achievements with the visual learning style when exposed to the sentence making and word list approaches. On that account, 45 basic level participants who studied at the Iran Language Institute (ILI), Bushehr, took part in this research study. At the outset, the learners were given Barsch learning style inventory (1991) to determine the learners' learn...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کامل